『기존 시설물(건축물) 내진성능 평가요령』정오표

목차			원본내용				수정(안)		수정사유
	垂1.2.1	현장조사 🏻	필수항목 및 세부기준		垂1.2.1	현장조사 표	필수항목 및 세부기준		<문구수정>
		조사 항목	요구사항	비고		조사 항목	요구사항	비고	- 해표8.2.1와 문구 통일
1.2.1 현장조사	지반	시추 조사	내진특등급 건물: 2개소 (이중 1개소는 주변 지반DB자료로 대치가능) 기타 내진등급 건물: 1개소 (주변 지반DB자료로 대치가능) 단, 지반DB자료는 대상건물과 시추공사이의 최소거리가 50m 이내의 자료이어야 함	에너지 보정된 표준관입시험 전단파 탐사 시험 단, 전단파속도에 의해 지반이 분류되므로 전단파속도 시험을 우선 고려한다.	지반	시추 조사	내진특등급 건물: 2개소 (이중 1개소는 주변 지반DB자료로 대치가능) 기타 내진등급 건물: 1개소 (주변 지반DB자료로 대치가능) 단, 지반DB자료는 대상건물과 시추공사이의 최소거리가 300m 이내의 자료이어야 함	에너지 보정된 표준관입시험 전단파 탐사 시험 단, 전단파속도에 의해 지반이 분류되므로 전단파속도 시험을 우선 고려한다.	
2.1 최소성능목표	(중략) 주기1)내 을 1.2로 을 적용함 2) 1000 정의한다 기의 1.2	진 I 등급 - 나눈 값(한다. 년 재현주 - 1400년 배로 정의		l는 붕괴방지 허용기준 중간수준의 허용기준) 대현주기 지진의 2/3로 30년 재현주기 지진 크	(중략) 주기1)내 을 1.2로 을 적용 ⁶ 된 허용 ⁷ 4.6.1의 2) 1000 정의한다 기의 1.2	진 I 등급 - 나눈 값(한다. <mark>이때</mark> 기준을 의 <u>값을 그대</u> 년 재현주 - 1400년 바로 정의		에는 붕괴방지 허용기준 이 중간수준의 허용기준) 결정 시 변형량과 관계 1.2로 나누지 않고 표 대현주기 지진의 2/3로 00년 재현주기 지진 크	<문구수정> - 검토기준을 명확하게 하기 위하여 문구 수정
3.1.1 적용대상건물 의 범위	이 요령! 대상으로		가절차는 저층의 철근콘크리	트조와 조적조 건물을	이 요령: 로 한다.		가절차는 철근콘크리트조와	조적조 건물을 대상으	<문구수정> - 3.1.1[해설]과 문구 통일
	종류가 .	S_5 일 가능	: 분류할 수 있는 자료가 충 성이 없는 경우에는 지반종류	S 를 적용할 수 있다.	종류가	S_5 일 가능 $^{\circ}$	· 분류할 수 있는 자료가 충 성이 없는 경우에는 지반종류	- <u>\$</u> 를 적용할 수 있다.	- 건축물 내진설계기준과 문구 통일
3.1.2 자료조사 및 정리	재의 단대 따른 기념	면치수에 [[] 본값을 사	경우 예비평가를 위해서는 현 대한 조사가 필요하다. 재료특 용할 수 있다. 설계도서가 있 재료특성을 사용할 수 있다.	특성의 경우 건설연도에	재의 단 ⁵ 따른 기- 다. 설계 을 사용 ⁵	면치수에 [[] 본값 <u>에 재</u> 도서가 있 할 수 있다	경우 예비평가를 위해서는 현대한 조사가 필요하다. 재료를 료상태에 따른 감소계수를 곱을 경우 설계도서에 근거한 나 이 때 재료특성은 표 1.2 계수를 곱하여 사용한다.	특성의 경우 건설연도에 <mark>급한 값을</mark> 사용할 수 있 단면치수 및 재료특성	
	내진성능	- 예비평기	를 위한 자료는 표 3.1.2에 (따라 정리한다.	<삭제>				<문구삭제> - 표 3.1.2가 요령 내에 포함되어 있지 않아 문구 삭제

목차	원본내용	수정(안)	수정사유
	<신규>	현장시험을 실시하여 재료강도를 결정하는 경우, 그 절차는 1.2.2에 따른다.	<문구추가> - 1.2.2의 내용에 따라 문구 추가
3.1.2 자료조사 및 정리 [해설]	예비평가에서는 단주기스펙트럼가속도만이 사용된다. 지반조사를 수행하지 않는 경우 가장 불리한 경우인 S_3 지반으로 가정하여 평가를 수행할 수 있다.	예비평가에서는 단주기스펙트럼가속도만이 사용된다. 지반조사를 수행하지 않은 경우 가장 불리한 <u>조건의</u> 지반으로 가정하여 평가 할수 있다.	
	(1)설계도서가 있을 경우 (중략) 수직부재의 평균전단응력 산정시에는 부재의 파괴모드를 고려 하여 (휨파괴강도/순높이)와 전단강도 중 작은 값을 사용하여야 한 다.	(1)설계도서가 있을 경우 (중략) 수직부재의 평균전단응력 산정시에는 부재의 파괴모드를 고려 하여 <u>기둥의 휨파괴시 전단력(V_e)과 전단강도(V_e)</u> 중 작은 값을 사용 하여야 한다.	<문구수정> - 동일 항(3.3.1.1)의 용어와 통일
3.3.1.1 재료강도 및	(2)설계도서가 없을 경우 에비평가시 재료의 설계강도를 알 수 없을 경우 건설연도에 따라 표 1.2.3의 기본값을 사용한다.	(2)설계도서가 없을 경우 예비평가시 재료의 설계강도를 알 수 없을 경우 건설연도에 따라 표 1.2.3의 기본값 <u>에 재료상태에 따른 감소계수를 곱하여</u> 사용한다.	<문구수정> - 1.2.2의 내용과 문구 통일
부재강도 평가	(3) 조적채움벽이 있을 경우에비평가에서는 조적채움벽의 역할을 보수적으로 평가하여 0.035MPa의 전단지배형 횡하중 저항능력으로 가지는 것으로 가정한다. 단, 바닥에서부터 천정까지 채움벽의 양측면이 모르타르로 마감되어 있으며 보하단부가 밀실하게 채워져 있을 경우는 0.09 MPa를 사용할 수 있다.	(3) 조적채움벽이 있을 경우 예비평가에서는 조적채움벽의 역할을 보수적으로 평가하여 0.035MPa의 전단지배형 횡하중 저항능력으로 가지는 것으로 가정한다. 단, 바닥에서부터 천정까지 채움벽의 양측면이 모르타르로 마감되어 있으며 보하단부가 밀실하게 채워져 있을 경우는 0.09 MPa를 사용할 수 있으며, 이 경우 경과년수에 따른 감소계수를 곱하여 사용한다.	<문구수정> - 1.2.2의 내용과 문구 통일 - 1.2.2의 내용과 문구 통일 (조적채움벽의 저항능력 0.09MPa는 표 6.1.1 조 적채움벽의 설계기준강도 기본값 중 재료상태가 불 량인 경우에 해당하며, 여기에 경과년수에 따른 감 소계수를 추가적으로 고려하기 위하여 해당 문구를 추가함)
3.3.1.2	비 형정 계수 λ s는 식 (3.3.4)로 산정한다.	비 <u>정형</u> 계수 λs는 식 (3.3.4)로 산정한다.	<오기수정> - 단순 오기 수정
평가방법 및 성능수준의 결정	5. 상층부 수직부재의 단면적 합이 하층부 수직부재의 단면적 합에 비해 30%를 초과하는 경우(필로티 등) 또는 기둥사이의 조적벽체가 밀실하게 채워진 경우, 조적벽체도 수직부재로 본다.	5. 상층부 수직부재의 단면적 합이 하층부 수직부재의 단면적 합에 비해 30%를 초과하는 경우(필로티 등). 단. 기둥사이의 조적벽체가 밀실하게 채워진 경우, 조적벽체도 수직부재로 본다.	
3.3.2.2 평가방법 및 등급산정	$DCR_{i} = \frac{S_{XS} \cdot W \cdot \gamma_{i}}{(0.8) \sum V_{i}} $ (3.3.6)	$DCR_i = rac{S_{XS} \cdot W \cdot \gamma_i}{\lambda_s (0.8) \sum V_i}$ (3.3.6) λ_s : 식 (3.3.4)에 의해 산정되는 비정형계수	<수식수정> - 누락된 비정형계수 추가

목차		원본내용			수정(안)		수정사유
	표 4.1.1 변형지배거	동과 힘지배거동의 구분		표 4.1.1 변형지배거	동과 힘지배거동의 구분		<문구추가>
		변형지배 거동	힘지배 거동		변형지배 거동	힘지배 거동	- 공동주택 성능기반 내진설계 지침에 따라 문구 추가
	모멘트 골조의 -보 -기둥 -접합부	위모멘트 휨모멘트 -	전단력 축력,전단력 ¹⁾ 전단력 ²⁾	모멘트 골조의 -보 -기둥 -접합부	위모멘트 휨모멘트 -	전단력 축력.전단력 ¹⁾ 전단력 ²⁾	
4.1.6 변형지배거동 과 힘지배거동	전단벽	휨모멘트, 전단지배형 벽체의 전단력	축력	전단벽	휨모멘트, 전단지배형 벽체의 전단력 <u>3</u>)	축력, <u>전단력</u>	
		(중략)			(중략)		
	있다.	·조에서 전단력은 변형지 [;] ·부의 축력, 전단력, 휨{		있다. 2) 철골조에서 접합 는 경우도 있다. 3) 압축력이 0.15 <i>f_c</i>	부의 축력, 전단력, 휨 $_{_k}A_{_g}$ 이하인 경우에 한하	·여 적용한다.	
4.1.8 재료강도와 부재강도	변형지배거동에서 부재강도는 기대강도를 사용하며, 힘지배거동에서 부재강도는 기대강도를 사용하며, 힘지배거동에서 부재강도는 공칭강도를 사용하다. 콘크리트 <mark>의 공칭강도와 기대강도의</mark> 부재강도는 공칭강도를 사용한다. 콘크리트 <u>, 조적조 및 강재의 공칭</u> 관계는 KDS 41 30 00(KBC 2016의 5장), 강재의 공칭강도와 기대강도는 각각 5장, 6장 및 7장에 따른다.				조적조 및 강재의 공칭	<문구 수정> - 불명확한 문구 수정	
4.2.2 선형절차의 적용제한	한 평균DCR의 차이		.접층에서 층전단력에 대 우 약층 비정형에 해당한 식 (4.2.2)로 산정한다.	한 평균DCR의 <u>비율</u>		l접층에서 층전단력에 대우 약층 비정형에 해당한식 (4.2.2)로 산정한다.	
4.3.1 일반사항	모드의 참여계수의 을 사용한 해 <mark>설</mark> 모델	합이 전체 질량의 90% 텔의 해석 결과를 비교하	용하여 판정한다. 즉, 각 인 해석모델과 1차모드만 +여 각 층의 층전단력이 이 큰 구조물로 판정한다.	모드의 참여계수의 을 사용한 해 <u>석</u> 모델	합이 전체 질량의 90%의 의 해석 결과를 비교하	용하여 판정한다. 즉, 각 인 해석모델과 1차모드만 아여 각 층의 층전단력이 이 큰 구조물로 판정한다.	
4.3.6 부재별 허용기준		만족여부는 성능점에서 [.] 테시된 허용기준과 <mark>과</mark> 의 ㅂ	부재의 비선형변형량과 5 교를 통해 판정한다.		반족여부는 성능점에서 ! 베시된 허용기준과의 비교	부재의 비선형변형량과 5 ☑를 통해 판정한다.	<오기수정> -단순 오기 수정
4.4.1 일반사항			진파 종류에 따라 큰 차 세 대한 해석이 필요하다.	1		진파 종류에 따라 큰 차 대한 해석이 필요하다.	<문구수정> - 건축물 내진설계기준과 문구 통일
4.4.2 하중조합 및	석하여 최댓값에 대	하여 평가한다.	<u>-</u> 3 개 이상 사용하 여 해	<u>재력과 변형량은 각</u> <u>평가한다.</u>	해석결과의 최대응답 중	- 3 <u>쌍</u> 이상 사용하 <u>고, 부</u> 5 가장 큰 값을 사용하여	<문구수정> - 건축물 내진설계기준과 문구 통일
다축가진효과	(5) 지반운동기록 세 량 의 평균값을 사용		경우 에는 부재력과 변형		<u>7쌍</u> 이상 사용 <u>하는</u> 경우 <u>평균값을 사용하여</u> 평7	2 <u>.</u> 부재력과 변형량 <u>은 각</u> 가한다.	<문구수정> - 건축물 내진설계기준과 문구 통일

목차		원본	·내용			 수정	형(안)		수정사유
	(4) 내진설계되지 값들의 70%로 저 이 이루어졌다 하 게 되므로 내진보 ²	계되지 않은 건물: 이 제한적인 부재	의 경우 내진보강	(4) 내진설계되지 않은 건물의 허용층간변형각은 표 4.6.1에 규정된 값들의 70%로 제한한다. 내진설계되지 않은 건물의 경우 내진보강이 이루어졌다 하더라도 변형능력이 제한적인 부재들이 다수 남아있게 되므로 내진보강 이전과 <u>이후의 허용층간변형각 중 불리한 값을 적용한다.</u>				<문구추가> - 불명확한 문구 수정 (보수적인 허용치 적용)	
	표 4.6.2 성능수준	별 중력하중저항	능력		표 4.6.2 성능수준	<u>-</u> 별 중력하중저힝	남능력		<오기수정>
	성능수준		판정수준		성능수준		판정수준		- 단순 오기 수정
4.6 성능수준의 판정	거주가능		가능을 만족하지 건물의 기능수행을 경우		거주가능	손상이 <u>전</u> 체 을 확인하는			
		(º)ō}	생략)			(º)ō}	생략)		
	(8) 조적채움벽을 <i>7</i> (9) 비선형정적해석 (10)선형절차와 비	에서 (후략)	 		(<u>9)</u> 조적채움벽을 기 (<u>10)</u> 비선형정적해 (<u>11)</u> 선형절차와 비	석에서 (후략)	ᆤ)		<오기수정> - 번호 오기 수정
5.3.1 해석모델의 적용	(2) 철근콘크리트 동특성을 반영할 ² 또는 5.3.4의 섬유	경우, 부재 단면;	을 그림 4.3.1과 겉			경우, <u>소성힌지</u> 의	<u>부 특성은</u> 그림 4.		<문구수정> - 불명확한 문구 수정
	표 5.3.1 철근콘크	리트 구조부재별	유효강성		표 5.3.1 철근콘크	그리트 구조부재별	l 유효강성		<문구수정> - 각주번호 위치 변경
	부재	휨강성 ³	전단 강성	축강성	부재	휨강성	전단 강성	축강성	- 건축구조기준 및 공동주택 성능기반 내진설계 지 침의 균열 벽체 강성과 통일 - 불명확한 문구 수정
	<u>보</u> +	$0.35 E_c I_g$	$0.4E_cA_w$	E_cA_g	基	$0.35 E_c I_g \frac{1)}{2}$	$0.4E_cA_w$	E_cA_g	- 물등복인 군구 구경
	기둥	$0.7E_cI_g$	$0.4E_cA_w$	$rac{E_c A_g}{E_s A_s^{rac{11}{2}}}$	기둥	$0.7E_cI_g$	$0.4E_cA_w$	$E_cA_g \ E_sA_s{}^{2)}$	
5.3.2	비균열 벽체	$0.7E_cI_g$	$0.4E_cA_w$	E_cA_g	비균열 벽체	$0.7E_{c}I_{g}$	$0.4E_cA_w$	E_cA_g	
유효강성	균열 벽체 ³⁾	$0.35E_cI_g$	$\frac{0.4}{E_c}A_w$	E_cA_g	균열 벽체 ³⁾	$0.35E_cI_g$	$0.2E_cA_w$	$\underline{E_c A_g}$	
	는 건축구조기	$\frac{1}{2} I_g$ 는 웨브부분 준에 규정된 유	의 <i>I_g</i> 값의 2배의 : 효폭의 규정에 따 :에 의해 균열이 ¹	라 산정	 는 건축구조기 <u>2) 인장력이 작</u> 성	기준에 규정된 유 <mark>용하는 경우</mark>	의 <i>I_g</i> 값의 2배의 효폭의 규정에 따 등에 의해 균열이	라 산정	

목차		원본내용			수정(안)		수정사유		
5.3.4 섬유요소모델	(1) (중략) 반복하중을 (unloading) 또는 재하(re류변형에 의한 압축응력 별	loading) 에 의한	에너지 소산이 없고 잔	(1) (중략) 반복하중을 (unloading) 또는 <u>재</u> 재하(r 변형에 의한 압축응력 발현	reloading) 에 의한 에	너지 소산이 없고 잔류			
	② 보의 강도가 큰 경우() 로 모델링하며 기둥은 강역	100		② 보의 강도가 큰 경우() 로 모델링하며 기둥은 강역		<오기수정> - 부등호 변경			
	표 5.4.1 횡보강근 상세에	따른 RC기둥의 파	괴모드 분류	표 5.4.1 횡보강근 상세에	따른 RC기둥의 파괴	모드 분류	<오기수정>		
5.4.2 해석모델 및	전단 강도비 (V_p/V_o)	건축구조기준에서	리가 사용되고 규정하는 내진상세로 배근된 경우 ⁺	전단 강도비 (V_p/V_o)		가 사용되고 구정하는 내진상세로 배근된 경우	- 각주 위치 변경		
강성	0.6 이하인 경우		i	0.6 이하인 경우	i	1)			
	0.6 이상 1 이하인 경우	인 ii		0.6 이상 1 이하인 경우	i	ii			
	1 이상인 경우		iii	1 이상인 경우	i	ii			
	1) 소성힌지구간에서 횡보강근이 $A_v/b_w s \geq 0.002$ 이고 $s/d \leq 0.5$ 인 경우에만 파괴모드 i로 분류할 수 있다. 그 외의 경우 파괴모드 ii 로 분류함			1) 소성힌지구간에서 횡. 경우에만 파괴모드 i로 는 로 분류함					
5.4.3 강도	(1) 철근콘크리트 부재의 강도는 KDS 41 30 00(KBC 2016의 5장 콘크리트 구조)에 따른다. 이때 사용되는 재료강도는 5.2에 따라 산정한다. (2) 부재별 강도는 이 기준에서 별도로 정의하지 않은 경우에 건축구조기준에 따라 산정할 수 있다. (3) 철근콘크리트 허리벽에 의해 모멘트골조 기둥의 변형이 구속될경우 이에 따른 기둥의 단주효과를 고려하여 기둥의 강도를 평가하여야 한다. (4) 조적채움벽이 모멘트골조와 밀착되어 있는 경우, 모멘트골조의기둥은 조적채움벽으로부터 전달되는 전단력에 의한 효과를 고려하여 강도를 평가하여야 한다.			(1) 부재별 강도는 이 기준 조기준에 따라 산정할 수 라 산정한다. (2) 철근콘크리트 허리벽이경우 이에 따른 기둥의 단여야 한다. (3) 조적채움벽이 모멘트를 기둥은 조적채움벽으로부터여 강도를 평가하여야 한다	있다. 이때 사용되는 의해 모멘트골조 7 가주효과를 고려하여 7 말조와 밀착되어 있는 너 전달되는 전단력에	재료강도는 5.2에 따 기둥의 변형이 구속될 기둥의 강도를 평가하 · 경우, 모멘트골조의	<문구수정> - 중복 문구 수정 및 삭제 - 번호 수정		
	표 5.4.3 철근콘크리트 보	의 m 계수		표 5.4.3 철근콘크리트 보	의 m 계수		<오기수정> - 아랫첨자 글자크기 수정		
		부재 조건			부재 조건		의 자급의 교의교의 구경		
5.4.4.1	휨에 의해 지배되는 경우2)		휨에 의해 지배되는 경우	2)				
선형 절차	$-\frac{(\rho-\rho')/\rho\frac{b_a l}{b_a l}}{-}$	횡보강근 ³⁾	$V^{4)}/b_w d\sqrt{f_{ck}}$	$-\frac{(\rho-\rho')/\rho_{\underline{lal}}}{}$	횡보강근 ³⁾	$V^{4)}/b_w d\sqrt{f_{ck}}$			

목차		원본내용			수정(안)		수정사유
	전단강도가 전 m 계수는 모	보간하여 산정 기둥의 파괴모드별 그 기둥부재의 경우, d 후프 철근이 배근되어 체전단강도의 3/4 이 든 성능수준에서 동일 낚용축력 혹은 한계상타	/3보다 작은 간격으로 있고 전단철근에 의한 상인 기둥이 아닌 경우 하게 1로 본다. 여기서 해석을 통해 구한 축력	(중략) 주기1) 사이 값은 선형보간하여 산정 주기2) $5.4.2(3)$ 에 따라 기둥의 파괴모드별 그룹 i, ii, iii 결정 주기3) $P>0.7f_{ck}A_g$ 인 기둥부재의 경우, $d/3$ 보다 작은 간격으로 135도 갈고리 후프 철근이 배근되어 있고 전단철근에 의한 전단강도가 전체전단강도의 $3/4$ 이상인 기둥이 아닌 경우 m 계수는 모든 성능수준에서 동일하게 1로 본다. 여기서 P 는 부재의 작용축력 혹은 한계상태해석을 통해 구한 축력 이다. 주기4) V 는 한계상대해석을 통해 산정된 전단력			<오기수정> - 번호 수정
	표 5.4.6 철근콘크리트 보의 모델링 주요 변수 및 성능수준별 허용 기준			표 5.4.6 철근콘크리트 기준	보의 모델링 주요 변	수 및 성능수준별 허용	<오기수정> - 아랫첨자 글자크기 수정
		부재 조건			부재 조건		
	휨에 의해 지배되는 경-			휨에 의해 지배되는 경			
	$\frac{(\rho - \rho')/\rho \frac{b_a l}{b_a l}}{$	횡보강근 ³⁾	$V/b_w d\sqrt{f_{ck}}^{4)}$	$\frac{(\rho - \rho')/\rho_{\underline{lal}}}{-}$	횡보강근 ³⁾	$V/b_w d\sqrt{f_{ck}}^{4)}$	
5.4.4.2 비선형 절차	전단강도가 전처 성회전능력은 모 <i>P</i> 는 지진력과 <i>-</i> 축력이다. 주기4) <i>V</i> 는 비선형정적 단력	보간하여 산정 기둥의 파괴모드별 그 기둥부재의 경우, d 후프 철근이 배근되어 전단강도의 3/4 이상' 보든 성능수준에서 동일 수직하중에 의해 부재(해석 또는 비선형동적(룹 i, ii, iii 결정 /3보다 작은 간격으로 있고 전단철근에 의한 인 기둥이 아닌 경우 소 하게 0로 본다. 여기서 네 발생할 수 있는 최대	기준 (중략) 주기1) 사이 값은 선형: 주기2) 5.4.2(<u>3</u>)에 따라 주기3) $P > 0.7 f_{ck} A_g$ 인 135도 갈고리 전단강도가 전치성회전능력은 5 P는 지진력과 축력이다. 주기4) V 는 비선형정적 단력	보간하여 산정 기둥의 파괴모드별 그 ! 기둥부재의 경우, a 후프 철근이 배근되어 전단강도의 3/4 이상 라든 성능수준에서 동일 수직하중에 의해 부재(해석 또는 비선형동적	1/3보다 작은 간격으로 있고 전단철근에 의한 인 기둥이 아닌 경우 소 일하게 0로 본다. 여기서 에 발생할 수 있는 최대 해석으로부터 산정된 전	-번호 수정
	(1) 직사각형 전단벽 및 이용하여 모델링할 수 9		d-기둥요소나 벽요소를		있 <u>으며, 이형벽체는 등</u>	보-기둥요소나 벽요소를 :가의 보-기둥요소로 모	
5.5.1 일반사항	(5) 전단거동은 선형 또 모델링할 경우 표 5.3.1 으로 모델링할 경우 적 ² 다.	1의 전단탄성계수 를 시	용하여야 한다. 비선형	(5) 전단거동은 선형 도 모델링할 경우 표 5.3. 모델링할 경우 적절한	1의 <u>유효강성</u> 을 사용하	h여야 한다. 비선형으로	

목차	원본내용	수정(안)	수정사유
5.5.1 일반사항 [해설]	(1)-(3) 개구부가 있는 벽체는 일련의 벽기둥(pier)과 수평부분벽(수 직으로 나란히 배열된 개구부 사이의 벽체)으로 구성된 분절벽체들의 조합으로 모델링 한다. 다만 개구부가 벽체의 강성 및 강도에 미치는 영향이 크지 않은 경우에만 단일 벽체로 간주할 수 있다. 분절벽체를 섬유요소로 모델링할 경우에는 길이 방향으로 두 개의 요소를 연결 하여 구성한다.	직으로 나란히 배열된 개구부 사이의 벽체)으로 구성된 분절벽체들의	
5.5.3 강도	$\begin{split} V_n &= v_n dt_w \qquad \text{(5.5.6)} \\ v_n &= 0.69 \sqrt{f_{ck}} - 0.28 \sqrt{f_{ck}} \left(\frac{h_w}{l_w} - 0.5\right) + \frac{P}{4l_w t_w} + \rho_{se} f_y \leq 1.66 \sqrt{f_{ck}} \\ \text{(5.5.7)} \\ \rho_{se} &= A \rho_v + B \rho_h \qquad \text{(5.5.8)} \end{split}$	$\begin{split} V_n &= v_n dt_w \qquad (5.5.\underline{2}) \\ v_n &= 0.69 \sqrt{f_{ck}} - 0.28 \sqrt{f_{ck}} \left(\frac{h_w}{l_w} - 0.5\right) + \frac{P}{4l_w t_w} + \rho_{se} f_y \leq 1.66 \sqrt{f_{ck}} \\ (5.5.\underline{3}) \\ \rho_{se} &= A \rho_v + B \rho_h \qquad (5.5.\underline{4}) \end{split}$	<오기수정> - 수식번호 수정
	(1) 변형지배거동을 하는 부재의 만족 여부는 4.2.8의 식 (4.2.14)에 따라서 판정한다. 힘지배거동을 하는 부재의 만족여부는 4.2.8의 식 (4.2.15)에 따라 판정한다. 부재의 m 계수는 표 5.5.2 및 표 5.5.3과 같다. 이들 표는 변형지배거동에 대한 허용기준이다. 벽체의 변형자 배. 힘지배는 5.5.4 (1)에 따라 분류할 수 있다.	따라서 판정한다. 힘지배거동을 하는 부재의 만족여부는 4.2.8의 식 (4.2.15)에 따라 판정한다. 부재의 m 계수는 표 5.5.2 및 표 5.5.3과 같다. 이들 표는 변형지배거동에 대한 허용기준이다. 벽체의 <u>지배거동은</u> 5.5.4 (1)에 따라 분류할 수 있다.	- 5.4.4(1)와 문구 통일
5.5.4.1 선형절차	표 5.5.2 휨 지배 철근콘크리트 전단벽 및 관련 요소의 m 계수 조건 (중략) 2. 휨에 의해 지배되는 경우: 연결보 내진상세단면인 경우 ⁴ 이.5 이상 비내진상세단면인 70.25 이하 경우 ⁴ 이.5 이상 대각선배근 N.A. 1) 사이값은 선형보간한다. 2) 배근상태와 축력비는 (A _s − A _s ')f _y + P t _w l _w f _{ck} 3) 작용 전단력의 비율은 V/(√f _{ck} t _w l _w)로 평가한다. 4) 내진상세 단면과 비내진상세 단면의 판단은 건축구조기준(KBC 2016)의 0520 내진설계 시 특별고려사항의 규정에 따른 횡보강 근의 만족 여부에 따른다.	표 5.5.2 휨 지배 철근콘크리트 전단벽 및 관련 요소의 m 계수 조건 (중략) 2. 휨에 의해 지배되는 경우: 연결보 내진상세단면인 0.25 이하 경우⁴ 0.5 이상 비내진상세단면인 0.25 이하 경우⁴ 0.5 이상 대각선배근 N.A. 1) 사이값은 선형보간한다. 2) 배근상태와 축력비는 (A _s − A _s ')f _y + P t _w l _w f _{ck} 3) 작용 전단력의 비율은 V/(√f _{ck} t _w l _w)로 평가한다. 4) 내진상세 단면과 비내진상세 단면의 판단은 KDS 41 30 00의 4.18 내진설계 시 특별 고려사항의 규정에 따른 횡보강근의 만족 여부에 따른다.	<문구수정> - 표 5.5.3의 각주5)와 문구 통일

목차	<u> </u>	원본내용	2	수정(안)	수정사유
		리트 전단벽 및 관련 요소의 m 계수		기트 전단벽 및 관련 요소의 m 계수	<문구삭제>
		조건		조건	- 각주 내용과 관련없는 항목의 윗첨자 삭제
	1. 전단에 의해 지배되는 경우 ²⁾ : 전단벽 요소		1. 전단에 의해 지배되는 경-	우 ²⁾ : 전단벽 요소	
	배근상태와 축력비 ³⁾	작용 전단력의 비율4)	배근상태와 축력비 ³⁾	작용 전단력의 비율 ⁴⁾	
	0.05 이하		0.05 이하		
	0.05 초과		0.05 초과		
	2. 전단에 의해 지배되는 경	우 ^半 : 연결보	2. 전단에 의해 지배되는 경-	우 : 연결보	
	내진상세단면인	0.25 이하	내진상세단면인	0.25 이하	
	경우 ⁵⁾	0.5 이상	경우 ⁵⁾	0.5 이상	
	비내진상세단면인	0.25 이하	비내진상세단면인	0.25 이하	
	경우 ⁵⁾	0.5 이상	경우 ⁵⁾	0.5 이상	
	여기서, M_{yE} : 전단벽 또는 분절학 항복모멘트강도 <i>문</i> : 벽체의 유효휨강성	벽체의 평균재료강도를 사용해 산정한 ;	여기서, M_{yE} : 전단벽 또는 분절벽 항복모멘트강도 $\frac{(EI)_{eff}}{}$: 벽체의 유효휨강성	1체의 평균재료강도를 사용해 산정한	
	표 5.5.5 전단 지배 철근콘크 델링 변수 및 허용기준	리트 전단벽 및 관련 요소의 비선형 모	표 5.5.5 전단 지배 철근콘크리 델링 변수 및 허용기준	리트 전단벽 및 관련 요소의 비선형 모 -	<문구삭제> - 각주 내용과 관련없는 항목의 윗첨자 삭제
		리트 전단벽 및 관련 요소의 비선형 모 조건		기트 전단벽 및 관련 요소의 비선형 모 조건	
	델링 변수 및 허용기준 배근상태와 축력비 ²⁾	조건	델링 변수 및 허용기준	조건	
.5.4.2 미선형절차	델링 변수 및 허용기준	조건 작용 전단력의 비율 ³⁾	델링 변수 및 허용기준	조건 작용 전단력의 비율 ³⁾	
	델링 변수 및 허용기준 배근상태와 축력비 ²⁾ 2. 연결보 ⁴⁾ 내진상세단면인	조건 작용 전단력의 비율 ³⁾	델링 변수 및 허용기준 배근상태와 축력비 ²⁾ 2. 연결보 내진상세단면인	조건 작용 전단력의 비율 ³⁾	
	델링 변수 및 허용기준 배근상태와 축력비 ²⁾ 2. 연결보 ⁴⁾	조건 작용 전단력의 비율 ³⁾ (중략)	델링 변수 및 허용기준 배근상태와 축력비 ²⁾ 2. 연결보	조건 작용 전단력의 비율 ³⁾ (중략)	
	델링 변수 및 허용기준 배근상태와 축력비 ²⁾ 2. 연결보 ⁴⁾ 내진상세단면인	조건 작용 전단력의 비율 ³⁾ (중략)	델링 변수 및 허용기준 배근상태와 축력비 ²⁾ 2. 연결보 내진상세단면인	조건 작용 전단력의 비율 ³⁾ (중략) 0.25 이하	

목차	원본내용	수정(안)	수정사유
5.6	① 이형 직선철근, 갈고리 철근, 겹침이음 시 철근의 저항능력은 식 $(5.6.1)$ 을 이용하여 구할 수 있다. $f_s = 1.25 \left(\frac{l_b}{l_d}\right)^{2/3} f_y \qquad (5.6.1)$ 여기서, $l_b \qquad : 실제 정착길이$ $l_d \qquad : 소요 정착길이$ $f_y \qquad : 설계기준항복강도$ $\frac{5}{2}$ 단, 철근의 재료 기대강도나 공칭강도를 초과하지 않도록 한다. 횡보 강근이 유효 춤의 $1/3$ 이하의 간격으로 배근되어 있지 아니하면, 요구연성도 또는 DCR이 1.0 에서 2.0 으로 증가함에 따라 철근의 항복 강도가 $1.0f_s$ 에서 $0.2f_s$ 로 저하된다고 가정하여 사용한다.	① 이형 직선철근, 갈고리 철근, 겹침이음 시 철근의 저항능력은 변형지배거동일 경우 식 (5.6.1). 힘지배거동일 경우 식 (5.6.2)를 이용하여 구할 수 있다. $f_s = 1.25 \left(\frac{l_b}{l_d}\right)^{2/3} f_y \leq f_{ye} \text{(5.6.2)}$ 여기서. $l_b : \text{실제 정착길이}$ $l_d : \text{소요 정착길이}$ $f_{ye} : \text{철근의 기대강도}$ 형보강근이 유효 춤의 1/3 이하의 간격으로 배근되어 있지 아니하면, 요구연성도 또는 DCR이 1.0에서 2.0으로 증가함에 따라 철근의 항복강도가 $1.0f_s$ 에서 $0.2f_s$ 로 저하된다고 가정하여 사용한다.	<수식추가>
최근의 정착 및 이음	② 철근의 문힘길이가 순피복두께를 포함하여 $3d_b$ 이상인 절단된 이 형 직선철근의 저항성능은 식 $(5.6.\frac{2}{2})$ 을 이용하여 구할 수 있다. $f_s = \frac{17}{d_b}l_e \leq f_y \tag{5.6.2}$ 여기서, $l_e : 철근의 문힘길이$	② 철근의 문힘길이가 순피복두께를 포함하여 $3d_b$ 이상인 절단된 이 형 직선철근의 저항성능은 식 $(5.6.3)$ 을 이용하여 구할 수 있다. $f_s = \frac{17}{d_b}l_e \le f_y \qquad \qquad (5.6.3)$ $-$ 여기서, $l_e \qquad : 철근의 문힘길이$	<문구수정> - 식(5.6.2) 추가에 따른 수식 번호 수정
	과하는 경우, 요구연성도 또는 DCR이 2.0에 도달하였을 때 철근의 최대 응력이 $1.0f_s$ 에서 $0.2f_s$ 로 저하된 것으로 가정할 수 있다. 보기둥 접합부 내부에서 하단근 묻힘길이가 짧은 보부재의 휨강도는 식 $(5.6.2)$ 의 철근 응력 제한치를 고려하여 구한다.	f_s 가 f_y 이하이며 설계하중으로부터 계산된 철근의 응력이 f_s 를 초과하는 경우, 요구연성도 또는 DCR이 2.0에 도달하였을 때 철근의 최대 응력이 $1.0f_s$ 에서 $0.2f_s$ 로 저하된 것으로 가정할 수 있다. 보기둥 접합부 내부에서 하단근 묻힘길이가 짧은 보부재의 휨강도는식 $(5.6.3)$ 의 철근 응력 제한치를 고려하여 구한다.	
	(2) 내진보강에 의해 추가된 다우얼철근의 항복 강도는 콘크리트 구조 기준(2012) 15.2 의 규정에 따라서 산정한다.	규정에 따라서 산정한다.	- 최신설계기준명으로 문구 수정
6.1.1 일반사항	(2) 조적채움벽의 효과를 고려할 경우 조적채움벽의 지압파괴, 면내파괴 및 면외전도 뿐 아니라 조적채움벽의 효과에 의한 인접골조 기둥의 인장파괴, 압축 파괴, 전단파괴 및 및 보-기둥 접합부의 전단파괴를 검토하여야 한다.	(2) 조적채움벽의 효과를 고려할 경우 조적채움벽의 지압파괴, 면내파괴 및 면외전도 뿐 아니라 조적채움벽의 효과에 의한 인접골조 기둥의 인장파괴, 압축 파괴, 전단파괴 및 보-기둥 접합부의 전단파괴를 검토하여야 한다.	

목차	원본내용	수정(안)	수정사유
	(1) 재료시험을 실시하지 않은 경우 표 6.1.1에 제시된 공청강도의 기본값 을 사용할 수 있다.	(1) 재료시험을 실시하지 않은 경우 <u>조적채움벽의 재료강도(공칭강도)</u> 로 표 6.1.1에 제시된 기본값 <u>에 표 1.2.2의 경과년수에 따른 감소계수를 곱한 값을 사용할 수 있다.</u>	<문구통일> - 1.2.2의 내용과 문구 통일
6.1.1.3 재료 특성 기본값	표6.1.1 조적채움벽의 설계기준강도 기본값 (MPa) (중략) 주기1)조적개 <mark>채</mark> 와 줄눈에 열화가 나타나지 않고 육안으로 확인되는 균열이 없는 경우 주기2)조적개 <mark>채</mark> 와 줄눈에 열화가 나타나지 않고 육안으로 확인되는 미세한 균열이 있는 경우 주기3)조적개 <mark>채</mark> 또는 줄눈에 열화가 나타나거나 또는 심각한 균열이 있는 경우	표6.1.1 조적채움벽의 설계기준강도 기본값 (중략) 주기1)조적개체와 줄눈에 열화가 나타나지 않고 육안으로 확인되는 균열이 없는 경우 주기2)조적개체와 줄눈에 열화가 나타나지 않고 육안으로 확인되는 미세한 균열이 있는 경우 주기3)조적개체 또는 줄눈에 열화가 나타나거나 또는 심각한 균열이 있는 경우	< 오기수정> - 단순 오기 수정
6.1.2	$\tan \theta_{\rm m} = h_m / \frac{1}{t_m} \qquad (6.1.4)$	$ an \ heta_{\rm m} = h_m / \underline{L_m} \ ag{6.1.4}$ $\underline{\theta}$ $\underline{h_m} : {\bf \Sigma} {\bf \nabla} {\bf M} {\bf S} {\bf \Psi} {\bf \Theta} \ \underline{L_m} : {\bf \Sigma} {\bf \nabla} {\bf M} {\bf S} {\bf \Psi} {\bf \Theta} \ \underline{C} {\bf H} {\bf O} \ \underline{C} {\bf O} \ \underline{C} {\bf O} \ \underline{C} {\bf O} \ \underline{C} \ \underline{C} {\bf O} \ \underline{C} \$	<오기수정> - 단순 오기 수정
강성	$b_m = [0.175(\lambda h)^{-0.4}]d_m \qquad (6.1.9)$	$b_m = [0.175(\lambda h_{\underline{c}})^{-0.4}]d_m \qquad (6.1.9)$	<오기수정> - 단순 오기 수정
	$ \frac{\lambda_m}{\Delta_m} = \left[\frac{E_m t_m \sin 2\theta_{st}}{4E_c I_c h_m} \right]^{\frac{1}{4}} $ (6.1.10)	$\lambda_m = \left[\frac{E_m t_m \sin 2\theta_m}{4E_c I_c h_m}\right]^{\frac{1}{4}} \tag{6.1.10}$	<오기수정> - 단순 오기 수정
6.1.5 면외방향의 검토	(4) 6.1. 6 (5)와 (6)의 규정에 따라 강도에 대한 검토를 수행하여야 한다.	(4) 6.1. <u>5(</u> 5)와 (6)의 규정에 따라 강도에 대한 검토를 수행하여야 한다.	<오기수정> - 단순 오기 수정
6.2.3 강도	(2) 가로줄눈 파괴 시의 평균전단강도 가로줄눈 파괴 시의 평균전단강도 가로줄는 파괴 시의 평균전단강도 가로줄눈파괴 시 초기 평균전단강 도는 식 $(6.2.2)$ 로 산정하며, 최종강도 도달 후 즉, 미끄러짐 발생 이후의 강도는 식 $(6.2.3)$ 으로 산정한다. $Q_{CE} = V_{bjs1} = v_{me}A_n \qquad (6.2.2)$ $Q_{CE} = V_{bjs2} = 0.6P_D \qquad (6.2.3)$	(2) 가로줄눈 파괴 시의 평균전단강도 가로줄눈파괴 시 초기 평균전단 가로줄는 파괴 시의 평균전단강도 가로줄눈파괴 시 초기 평균전단 강도는 식 $(6.2.2)$ 로 산정하며, 최종강도 도달 후 즉, 미끄러짐 발생 이후의 강도는 식 $(6.2.3)$ 으로 산정한다. $Q_{CE} = V_{bjs1} = v_{me}A_n \qquad (6.2.2)$ $Q_{CE} = V_{bjs2} = 0.5P_D \qquad (6.2.3)$	<수식수정> - 해외기준(ASCE41-17)을 참조하여 수식 수정
6.2.4.1 선형절차	표6.2.1 비보강 조적조의 m계수 주기1) β= L/h_{eff}	표6.2.1 비보강 조적조의 m계수 주기1) β= <u>h_{eff}//L</u>	<수식수정> - 단순 오기 수정
7.3.2 기초 연결	(4) (중략) 각 한계상태에 대한 앵커볼트 강도는 콘크리트구조기준에 따라 산정하며, 강도감소계수의 적용은 4.1.9의 일반원칙에 따른다.	(4) (중략) 각 한계상태에 대한 앵커볼트 강도는 콘크리트구조기준에 따라 산정하며, 강도감소계수의 적용은 4.1. <u>8</u> 의 일반원칙에 따른다.	<오기수정> - 단순 오기 수정

목차	원본내용	수정(안)	수정사유
	표 7.4.1 철골완전강접모멘트골조의 m 계수	표 7.4.1 철골완전강접모멘트골조의 m 계수	<오기수정>
		부재 및 조건	- 위계에 따른 재정렬(중앙정렬)
	 보-휨	보-휨	<문구추가>
	$b_f/2t_f \leq 0.3\sqrt{E/F_{ye}}$ 및	$b_f/2t_f \leq 0.3\sqrt{E/F_{ue}}$ 및	누락된 문구 추가
	$h/t_w \leq 2.45 \sqrt{E/F_{ne}}$	$h/t_w \leq 2.45\sqrt{E/F_{ne}}$	(인장력 발생 시 m계수 적용방법)
	$b_f/2t_f > 0.38\sqrt{E/F_{ue}}$ 또는	$b_f/2t_f > 0.38\sqrt{E/F_{ue}}$ 또는	
	$h/t_w > 3.76\sqrt{E/F_{ue}}$	$h/t_w > 3.76\sqrt{E/F_{ue}}$	
	기타	기타	
	기둥-휨 ^{1),2)}	기둥-휨 ^{1),2)}	
	P < 0.2P _{CL} 인 경우	P<0.2P _{CL} 인 경우 <mark>5</mark>	
	$b_f/2t_f \leq 0.3\sqrt{E/F_{ye}}$ 및	$b_f/2t_f \leq 0.3 \sqrt{E/F_{ye}}$	
	$h/t_w \leq 1.76 \sqrt{E/F_{ye}}$	$h/t_w \leq 1.76 \sqrt{E/F_{ye}}$	
	$b_f/2t_f>0.38\sqrt{E/F_{ye}}$ 또는	$b_f/2t_f>0.38\sqrt{E/F_{ye}}$ 또는	
	$h/t_w > 2.7 \sqrt{E/F_{ye}}$	$h/t_w > 2.7 \sqrt{E/F_{ye}}$	
	<u> 기타</u>	7 <u>F</u>	
	0.2P_{CL} ≤ P ≤ 0.5P_{CL}인 경우	0.2P _{CL} ≤ P ≤ 0.5P _{CL} 인 경우	
	$b_f/2t_f \leq 0.3\sqrt{E/F_{ye}}$ 및	$b_f/2t_f \leq 0.3\sqrt{E/F_{ye}}$ ੂ	
7.4.4.1	$h/t_w \leq 1.53 \sqrt{E/F_{ye}}$	$h/t_w \leq 1.53 \sqrt{E/F_{ye}}$	
선형절차	$b_f/2t_f>0.38\sqrt{E/F_{ye}}$ 또는	$b_f/2t_f>0.38\sqrt{E/F_{ye}}$ 또는	
	$h/t_w > 2.35\sqrt{E/F_{ye}}$	$h/t_w > 2.35\sqrt{E/F_{ye}}$	
	기타		
	기둥 패널존	기둥 패널존	
	전단 철골완전강접모멘트접합부	전단 철골완전강접모멘트접합부	
	<u>===현건경법보건트법법무</u> 전용접 접합부 또는	전용접 접합부 또는	
	웨브볼트 플랜지현장용접 접합부 ⁴⁾	웨브볼트 플랜지현장용접 접합부 ⁴⁾	
	보플랜지절취형(RBS) 접합부 ⁴⁾	보플랜지절취형(RBS) 접합부 ⁴⁾	
	용접하부헌치 접합부 용접상하부헌치 접합부	용접하부헌치 접합부 용접상하부헌치 접합부	
	$-$ 1) 각형강관 기둥의 경우, $b_f/2t_f \leq 0.3\sqrt{E/F_{ye}}$ 대신	<u> </u>	
	$b/t \leq 0.64\sqrt{E/F_{ue}}$ 를 사용하고,	1) 각형강관 기둥의 경우, $b_f/2t_f \leq 0.3\sqrt{E/F_{ye}}$ 대신	
	$b_f/2t_f>0.38\sqrt{E/F_{ne}}$ 대신 $b/t\leq 1.12\sqrt{E/F_{ne}}$ 를 사용한다.	$b/t \leq 0.64 \sqrt{E/F_{ye}}$ 를 사용하고,	
	p p p p p p p p p p	$b_f/2t_f>0.38\sqrt{E/F_{ye}}$ 대신 $b/t\leq 1.12\sqrt{E/F_{ye}}$ 를 사용한다.	
	3) 휨면내에서 $k_p = 1 - (5/3) (P/P_{CL})$	2) $P > 0.5 P_{CL}$ 인 기둥은 힘지배거동으로 간주한다.	
	4) d : 보 깊이, mm	3) 휨면내에서 $k_p = 1 - (5/3) (P/P_{CL})$	
		4) d : 보 깊이, mm 5) 기둥에 인장력 발생 시 " $P < 0.2P_{CL}$ "로 m계수 적용	
		이 <u>시하네 단경국 로경 이 그 \ W.47 CL</u> 노 IIV개구 각종	

목차	원본내용	수정(안)	수정사유
목차	원본내용 표 $7.4.2$ 철골 완전강접모멘트 접합부의 비선형 모델링 주요 변수 및 허용기준	수정(안) 표 7.4.2 철골 완전강접모멘트 접합부의 비선형 모델링 주요 변수 및 허용기준	수정사유 <오기수정> - 위계에 따른 재정렬(중앙정렬)
	$h/t_w > 3.70 \sqrt{E/F_{ye}}$ 기둥-휨 $^{1,2)}$ $P < 0.2P_{CL}$ 인 경우 $b_f/2t_f \leq 0.3 \sqrt{E/F_{ye}} \mathbb{Q}$ $h/t_w \leq 1.76 \sqrt{E/F_{ye}}$ $b_f/2t_f > 0.38 \sqrt{E/F_{ye}} \mathbb{E}$ 는	기둥-휨 $^{1),2)}$ $P < 0.2P_{CL}$ 인 경우 $b_f/2t_f \leq 0.3\sqrt{E/F_{ye}} \ 및$ $h/t_w \leq 1.76\sqrt{E/F_{ye}}$	
7.4.4.2	$\begin{array}{c} b_{f}/2t_{f}>0.38\sqrt{E/F_{ye}} \ \ \\ h/t_{w}>2.7\sqrt{E/F_{ye}} \\ \hline \\ 0.2P_{CL}\leq P\leq 0.5P_{CL}$ 인 경우 및 $b_{f}/2t_{f}\leq 0.3\sqrt{E/F_{ye}} \ \ \\ h/t_{w}\leq 1.53\sqrt{E/F_{ye}} \end{array}$	$\begin{array}{c} b_f/2t_f>0.38\sqrt{E/F_{ye}} & \mathfrak{L} \\ \hline h/t_w>2.7\sqrt{E/F_{ye}} \\ \hline \hline 2 \boxed{\text{E}} \\ \hline 0.2P_{CL} \leq P \leq 0.5P_{CL}$ 인 경우 $ b_f/2t_f \leq 0.3\sqrt{E/F_{ye}} & \mathbf{Q} \\ \hline h/t_w \leq 1.53\sqrt{E/F_{ye}} \end{array}$	
비선형절차	$b_f/2t_f>0.38\sqrt{E/F_{ye}}$ 또는 $h/t_w>2.35\sqrt{E/F_{ye}}$ 기둥 패널존	$b_f/2t_f>0.38\sqrt{E/F_{ye}}$ 또는 $h/t_w>2.35\sqrt{E/F_{ye}}$ 기둥 패널존	
	설을완신경업모멘트업업무 전용접 접합부 또는 웨브볼트 플랜지 현장용접 접합부4) 보플랜지절취형(RBS) 접합부4) 용접하부헌치 접합부 용접상하부헌치 접합부	절들편신강집모벤트집합부 전용접 접합부 또는 웨브볼트 플랜지 현장용접 접합부4) 보플랜지절취형(RBS) 접합부4) 용접하부헌치 접합부 용접상하부헌치 접합부	

목차			<u> </u> 일본내용			누 정(안)	수정사유
7.5.3.2 비선형절차	(1) 비선형 정적해석절차의 경우, 부재별 힘-변위 관계는 $7.5.2.2$ 에 따라 결정한다. 접합부 기대강도 Q_{CE} 는 선형절차와 동일한 값을 사용한다. (2) 비선형 동적해석절차의 경우, 실험 또는 건축구조기준에서 인정하는 기타 방법을 통해 완전한 부재별 이력거동을 결정해야 한다.			(1) 비선형정적절차의 경우, 부재별 힘-변위 관계는 $7.5.2.2$ 에 따라 결정한다. 접합부 기대강도 Q_{CE} 는 선형절차와 동일한 값을 사용한다. (2) 비선형동적절차의 경우, 실험 또는 건축구조기준에서 인정하는기타 방법을 통해 완전한 부재별 이력거동을 결정해야 한다.			
	垂 7.5.1	철골 중심가새골조의	m 계수	丑 7.5.1	 L 철골 중심가새골조의	m 계수	<문구추가>
	부재 및 조건				부	 재 및 조건	- 누락된 문구 추가 (강관, 파이프 보충설명)
		세장한 가새 ¹⁾	H형강, 쌍ㄱ형강 면내좌굴 ²⁾ , 쌍ㄷ형강 면내좌굴 ²⁾		세장한 가새 ¹⁾	H형강, 쌍ㄱ형강 면내좌굴 ²⁾ , 쌍ㄷ형강 면내좌굴 ²⁾	
		$\frac{\mathit{KL}}{\mathit{r}} \geq 4.2 \sqrt{\frac{\mathit{E}}{\mathit{F}_{\mathit{y}}}}$	쌍ㄱ형강 면외좌굴 ²⁾ , 쌍ㄷ형강 면외좌굴 ²⁾		$\frac{\mathit{KL}}{\mathit{r}} \geq 4.2 \sqrt{\frac{\mathit{E}}{\mathit{F}_{\mathit{y}}}}$	쌍¬형강 면외좌굴 ²⁾ , 쌍⊏형강 면외좌굴 ²⁾	
	압축		강관, 파이프, ㄱ형강 H형강,			강관 <u>(HSS 구조용강재)</u> 파이프 <u>(그 밖의 강관)</u> ㄱ형강	
	가새	짧은 가세 ^{1),3)}	쌍ㄱ형강 면내좌굴 ²⁾ , 쌍ㄷ형강 면내좌굴 ²⁾	압축 가새	0.0	 H형강, 쌍ㄱ형강 면내좌굴 ²⁾ ,	
7.5.4.1 선형절차		$\frac{\mathit{KL}}{\mathit{r}} \! \leq 2.1 \sqrt{\frac{\mathit{E}}{\mathit{F}_{\mathit{y}}}}$	쌍ㄱ형강 면외좌굴 ²⁾ , 쌍ㄷ형강 면외좌굴 ²⁾		짧은 가세 $^{1),3)}$ $\frac{KL}{r} \le 2.1 \sqrt{\frac{E}{F_y}}$	쌍ㄷ형강 면내좌굴 ²⁾	
			강관, 파이프			쌍ㄱ형강 면외좌굴 ²⁾ , 쌍ㄷ형강 면외좌굴 ²⁾	
			중간			강관 <u>(HSS 구조용강재)</u> 파이프 <u>(그 밖의 강관)</u>	
						중간	

목차	원본내용			수정(안)			수정사유
	표7.5.2 철골중심가새골조의 비선형 모델링 변수 및 허용기준			표7.5.2 철골중심가새골조의 비선형 모델링 변수 및 허용기준			<문구추가> - 누락된 문구 추가
	 부재 및 조건			 부재 및 조건			
7.5.4.2 비선형절차	압 축 가 새 1).2)	세장한 가새 $\frac{KL}{r} \geq 4.2 \sqrt{\frac{E}{F_y}}$ 짧은 가새4) $\frac{KL}{r} \leq 2.1 \sqrt{\frac{E}{F_y}}$ 중간	H형강, 쌍 ¬ 형강 면내좌굴³), 쌍 ⊏ 형강 면내좌굴³), 쌍 ¬ 형강 면외좌굴³), 쌍 □ 형강 면외좌굴³) 강관, 파이프 단일 ¬ 형강 H형강, 쌍 ¬ 형강 면내좌굴³), 쌍 □ 형강 면내좌굴³), 쌍 □ 형강 면내좌굴³), 쌍 □ 형강 면외좌굴³), 쌍 □ 형강 면외좌굴³), 강관, 파이프	압축 가새 ^{1),2)}	제장한 가재 $\frac{KL}{r} \geq 4.2 \sqrt{\frac{E}{F_y}}$ 짧은 가재4) $\frac{KL}{r} \leq 2.1 \sqrt{\frac{E}{F_y}}$	H형강, 쌍 ¬형강 면내좌굴³³, 쌍 ㄷ형강 면내좌굴³³, 쌍 ㅜ형강 면외좌굴³³, 쌍 ㄷ형강 면외좌굴³³, 쌍 ㄷ형강 면외좌굴³³, 강관(HSS 구조용강재) 파이프(그 밖의 강관) 단일 ¬형강 H형강, 쌍 ¬형강 면내좌굴³³, 쌍 ㄷ형강 면내좌굴³³, 쌍 ㄷ형강 면내좌굴³³, 쌍 ㄷ형강 면외좌굴³³, 강관, 파이프	(강관, 파이프 보충설명)
	H형강 쌍 기형강 강관 파이프 단일 기형강 인장을 받는 보, 기둥 ⁵⁾		중간 인장 가새 ^{5),6),7)} 인장을 받는 보, 기둥 ⁵⁾		H형강 쌍 ¬형강 강관(HSS 구조용강재) 파이프(그 밖의 강관) 단일 ¬형강	<문구추가 >	
8.3 기초의 지지력		(4) (3)을 적용하기 위해서 현재 사용하중 하에서 침하 등의 문제가 없음을 확인하여야 한다.			H을 확인하여야 한다.		- 누락된 문구 추가
8.6 지하구조의 안전성평가	(4) 비선형정적절차의 경우에 우선 관성력에 의한 지진하중에 대한 비선형 정적을 수행하여 성능점을 산정한다.			(4) 비선형정적절차의 경우에 우선 관성력에 의한 지진하중에 대한 비선형 정적 <mark>해석</mark> 을 수행하여 성능점을 산정한다.			< 오기수정> - 단순 오기 수정
9.1.1 목적	이 장은 건축, 기계 / 전기설비, 배관 등의 비구조요소의 내진성능평가에 적용한다.			이 장은 건축, 기계 및 전기설비, 배관 등의 비구조요소의 내진성능평가에 적용한다.			<문구수정> - 건축물 내진설계기준과 문구 통일
9.1.4 평가절차	(3) 비구조요소의 목표성능을 제2장의 전체건축물의 성능목표에 부합하도록 9.2에 따라 정의한다. 이때 구조체와 비구조요소 성능수준간의 상호관계는 표 9.2.1와 같이 고려되어야 한다.			(3) 비구조요소의 목표성능을 제2장의 전체건축물의 성능목표에 부합하도록 9.2에 따라 정의한다. 이때 구조체와 비구조요소 성능수준간의 상호관계는 표 2.1.1과 같이 고려되어야 한다.			<모기수정> - 단순 오기 수정
9.4.2 평가지진력 산정	(1) (중략) 비구조요소의 증폭계수, 반응수정계수, 중요도계수 및 구조물해석절차별 층가속도와 층 <mark>가속도</mark> 스펙트럼의 산정절차는 건축구조기준을 참고한다.			(1) (중략) 비구조요소의 증폭계수, 반응수정계수, 중요도계수 및 구조물해석절차별 층가속도와 층 <mark>응답</mark> 스펙트럼의 산정절차는 <u>건축물 내진설계기준(KDS 41 17 00)</u> 을 참고한다.			<오기수정> - 단순 오기 수정 - 최신설계기준명으로 문구 수정

목차	원본내용	수정(안)	수정사유
		$\frac{F_p = \frac{i p p}{R_p/I_p} A_x}{\frac{1}{R_p/I_p}} \tag{9.4.4}$	<오기수정> - 첨자 표기방식 통일 (대문자→소문자)
	W_p : 비구조요소의 가동중량, 가동중량은 비구조요소 자중과 함께 가동시에 부하되는 추가 중력하중을 포함한다.	까, · 미국조묘조의 기능중앙 <u>·</u> 기능중앙는 미국조묘조 시중의 함께 가동시에 부하되는추가 중력하중을 포함한다.	
9.6	표 9.2.1에 따라 기능수행이 요구되는 비구조요소 중 기계 / 전기 비구 조요소는 다음 규정을 통해 내진성능을 입증하여야 한다.	표 $\frac{2.1}{10}$ 따라 기능수행이 요구되는 비구조요소 중 기계 $\frac{1}{2}$ 전기 비구조요소는 다음 규정을 통해 내진성능을 입증하여야 한다.	<오기수정> - 단순 오기 수정
기능수행의 확인	(2) 중요도 1.5인 위험물질과 관련된 비구조요소의 경우 제조자는 정밀 해석 또는 실험을 통해 설계지진시에도 위험물질이 유출되지 않음을 증명하여야 한다.	(2) 중요도 <u>계수(፲,/)</u> 1.5인 위험물질과 관련된 비구조요소 경우 제조자는 정밀해석 또는 실험을 통해 설계지진시에도 위험물질이 유출되지 않음을 증명하여야 한다.	<문구수정> - 건축물 내진설계기준과 문구 통일
9.7.2 기계/전기 설비 비구조요소		9.7.2 <u>기계 및 전기</u> 비구조요소	<문구수정> - 건축물 내진설계기준과 문구 통일